45 research outputs found

    Dynamics Modeling of a Continuum Robotic Arm with a Contact Point in Planar Grasp

    Get PDF
    Grasping objects by continuum arms or fingers is a new field of interest in robotics. Continuum manipulators have the advantages of high adaptation and compatibility with respect to the object shape. However, due to their extremely nonlinear behavior and infinite degrees of freedom, continuum arms cannot be easily modeled. In fact, dynamics modeling of continuum robotic manipulators is state-of-the-art. Using the exact modeling approaches, such as theory of Cosserat rod, the resulting models are either too much time-taking for computation or numerically unstable. Thus, such models are not suitable for applications such as real-time control. However, based on realistic assumptions and using some approximations, these systems can be modeled with reasonable computational efforts. In this paper, a planar continuum robotic arm is modeled, considering its backbone as two circular arcs. In order to simulate finger grasping, the continuum arm experiences a point-force along its body. Finally, the results are validated using obtained experimental data

    Pattern Generation for Walking on Slippery Terrains

    Full text link
    In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this formulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.Comment: 6 pages, 7 figure

    Dynamics Modeling and Control of a Quadrotor with Swing Load

    Get PDF
    Nowadays, aerial robots or Unmanned Aerial Vehicles (UAV) have many applications in civilian and military fields. For example, of these applications is aerial monitoring, picking loads and moving them by different grippers. In this research, a quadrotor with a cable-suspended load with eight degrees of freedom is considered. The purpose is to control the position and attitude of the quadrotor on a desired trajectory in order to move the considered load with constant length of cable. So, the purpose of this research is proposing and designing an antiswing control algorithm for the suspended load. To this end, control and stabilization of the quadrotor are necessary for designing the antiswing controller. Furthermore, this paper is divided into two parts. In the first part, dynamics model is developed using Newton-Euler formulation, and obtained equations are verified in comparison with Lagrange approach. Consequently, a nonlinear control strategy based on dynamic model is used in order to control the position and attitude of the quadrotor. The performance of this proposed controller is evaluated by nonlinear simulations and, finally, the results demonstrate the effectiveness of the control strategy for the quadrotor with suspended load in various maneuvers

    Multiple Impedance Control for Object Manipulation

    No full text
    the presence of an unknown environment, have been proposed [8]. The Object Impedance Control (OIC), an extension of impedance control, has been developed for multiple robotic arms manipulating a common object [9]. The OIC enforces a designated impedance not of an individual manipulator endpoint, but of the manipulated object itself. A combination of feedforwardand feedback controls is employed to make the object behave like a reference impedance. It has been realized that applying the OIC to manipulation of a flexible object may lead to instability [10]. Based on the analysis of a representative system, it was suggested that in order to solve the instability problem, one should either increase the desired mass parameters or filter and lower the frequency content of the estimated contact force. Impedance Control was formulated originally to impose a desired behavior on a single manipulator interacting with its environment. In this paper, a new algorithm called Multiple Impedance Contro..
    corecore